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SETTING THE SCENE

Bob is enjoying his time on a new cruise with his fam-
ily. Among the cruise attractions is a massive waterslide.
While sliding down the slide Bob is met by catastrophe.
Due to a part failure the structure partially collapses as
Bob slides down, sending him careening into the sea. Un-
fortunately Bob is now lost at sea. He was fortunate
enough to be wearing a life jacket since he can’t swim so
he is floating somewhere in the Ocean.

Our mission is to save Bob.
Thankfully Bob’s phone has an SOS mode which

broadcasts his GPS location every minute. Unfortu-
nately this GPS signal is very weak and is only accurate
to a 50m radius. We need a narrower range to be able to
send out a rescue team.

METHODS

State-Space Model

Here is what we have thus far mathematically. We can
observe the variable Y , which is the output of the GPS
Y⃗ [n] ∼ N (x⃗[n], σpI2)
We also know that bob will have little effect on the

bulk ocean dynamics, and will flow as a neutrally boyant
particle embedded in the velocity field subject to random
forces from fish and other unmodelable sources. For the
purposes of this rescue mission we will neglect deep-water
effects and treat the flowfield as 2d To make the math
work out we’ll express this challenge as a linear-state-
space model. Which just means we will have a locally
linear update rule governing a vector timeseries.

Bob floats along the u field as follows To start out we
define

x⃗ =


x
y
vx
vy

 (1)

x⃗[n+ 1] = Ax⃗[n] +


0
0
Fx

Fy

 (2)

With Gaussian random forces

Fx, Fy ∼ N (0, σF I⊭) (3)

A is the matrix that integrates our velocity state into
our position state and with a weak damping α < 1 on
velocity for numeric stability

1 0 dt 0
0 1 0 dt
0 0 α 0
0 0 0 α

 (4)

We can then only observe position, which we express
as the following equation in terms of our state variables
and observation matrix H.

y⃗[n] = Hx⃗[n] + n⃗y (5)

H =

[
1 0 0 0
0 1 0 0

]
(6)

Where ny ∼ N (0, σyI2) is our ”observation noise”, and
Fb is our ”process noise”

Numerical Integration of Navier Stokes

Before generating our pictures its worth considering
Bob’s locale: the Ocean. Because Bob is lucky enough
to have a life jacket of neutral boyancy, we will model
Bob as an ideal lagrangian particle. Which is to say that
the contribution of outside velocity fields is greater than
any force on him. Another important factor is that we
are considering a high-reynolds number flow because the
lengthscale over which bob is moving is large while hes
moving comparitively slowly. We implement this with
WaterLily.jl a Julia library for fluid simulation. Wa-
terLily.jl solves the unsteady incompressible 2D or 3D
Navier-Stokes equations on a Cartesian grid. The pres-
sure Poisson equation is solved with a geometric multi-
grid method. In our case we can use the shallow-water
approximation and assume the flow regime is roughly 2d.
A common approach employed in WaterLily.jl is to first
solve the momentum equations, and have some numer-
ical error, then correct by solving the poisson pressure
equation.

Starting from the incrompressibility condition

∇ · u⃗ = 0 (7)

and the momentum equation
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∂tu+ u · ∇u = −1

ρ
∇p+ η∇2u (8)

We can decouple the pressure and velocity by taking
the divergence of the momentum equation to get

∇2p = −ρ∇ · (∂tu+ u · ∇u) + η∇2u (9)

To solve the equation WaterLily.jl uses the multigrid
method. The multigrid method is an efficient algo-
rithm for solving large-scale discretized partial differen-
tial equations (PDEs), particularly useful due to its rapid
convergence rates. It operates by employing a hierar-
chy of grid resolutions to smooth out errors at different
scales, typically involving a sequence of restriction and
prolongation operations between coarser and finer grids.
This approach is highly effective for a variety of PDEs,
and recent advancements have integrated machine learn-
ing techniques to optimize the construction of multigrid
solvers for specific problems.

The Kalman Filter

I promise we’ll get to the fluids part in a bit but before
we need to figure out how to estimate Bob’s position from
our noisy GPS signal.

We seek the distribution X|Y ∼ N(?, ?)
Because we assumed our system had randomness that

was purely gaussian, we know our target distribution will
also be Gaussian, and we can do Linear Algebra to figure
it out exactly.

I’ll spare you the complete derivation, but I’ll give a
sketch.

We know that

E[X[n+ 1]] = AE[X[n]] (10)

and

cov(X[n+ 1]) = Acov(X[n])AT + σF I4 (11)

In the space of linear-gaussian models, an optimal es-
timator is always linear. So we will assume our estimate
will look like our naive estimate based on our previous
state, plus some gain times an error term for to correct
our estimate via our observation. This gain is called the
Kalman Gain

x̂[n] = E[x[n]] +K(y[n]− E[y[n]|x[n]]) (12)

We can solve for K by assuming it provides an estimate
with the minimum possible variance. Which is to say
P := Cov(X[n]) has small singular values. Because the
covariance matrix is by definition positive semi-definite,

we can bound the singular values by the eigenvalues. The
solution can then be found via matrix calculus by setting
the derivative of the Tr(P̂ ) to zero.
Assuming the linear gain matrix K exists, the optimal

estimate of the estimate covariance would be

P̂ = (I−KH)P (I−KH)T +KKvKT (13)

Thus we seek

K = argmin
K

Tr(P̂ ) (14)

Using matrix calculus identities we can expand the pre-
vious statement

Tr(P̂ ) = Tr(P ) + Tr(KHPHTKT ) (15)

−2Tr(KHP ) + Tr(KKvKT ) (16)

We then take the derivative with respect to K and
set it to 0. Note that, because all matrices involved are
positive semi-definite, the solution will also be positive
semi-definite, implying the critical point is a minimum
without having to check the hessian.

d

dK
Tr(P̂ )) = 0 = 2K(HPHT )− 2PTHT + 2KKv (17)

Finally, via algebra we obtain the solution

K = PHT (HPHT +Kv)
−1 (18)

where H is the observation matrix, Kv is the observa-
tion noise covariance and P is the predicted state error
covariance

RESULTS

We begin with (figure 11) where we use the simplest
possible estimator: an average of the last 3 gps pings.
We then move on to the rank 2 Kalman filter (figure

2) which observes the gps signal and estimates velocity
and position covariances.
Lastly, we incorporate our knowledge of the velocity

field to develop a rank 4 Kalman filter (figure 3) which
has significantly better tracking accuracy and smaller es-
timated covariance.

CONCLUSION

We saved castaway Bob!
Should Bob somehow get lost at sea again there are

some more complicated techniques we could experiment
with for tracking and estimation. Among techniques not
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FIG. 1. Fixed-Lag Mean Estimator of order 3

FIG. 2. Kalman Filter Estimator with rank 2

covered but of interest are extensions of the Kalman filter
known as the unscented Kalman filter ([1]) and the En-
semble Kalman filter ([2]). Both of these methods have
means of correcting for nonlinearities in the system dy-
namics by taking higher-order moments. Both of which
are more computationally expensive.

[1] E. Wan and R. Van Der Merwe, The unscented kalman
filter for nonlinear estimation, in Proceedings of the IEEE
2000 Adaptive Systems for Signal Processing, Communica-
tions, and Control Symposium (Cat. No.00EX373) (2000)
pp. 153–158.
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FIG. 3. Kalman Filter Estimator with rank 4


