
GPU Acceleration for Informative Ensemble Kalman Learning at Scale

Thelonious Cooper

We present a novel method for the GPU acceleration of joint neural architecture search (NAS)
and optimization based on an Informative Ensemble Kalman Learner (IEKL) which represents a
significant improvement over state-of-the-art for many models. This approach constructs empiri-
cal distributions over parameters via a Gaussian Process formulation. The mean and covariance
of parallel forward passes form an accurate estimate of the model Jacobian with no need to track
gradients or backpropagate, all while quantifying uncertainty. The construction of empirical distri-
butions, combined with the assumption of local gaussianity enable a new paradigm of Informative
Learning. In this paradigm the approximate mutual information of parameters with respect to
model error can be readily computed and used to identify dead weights. Further, information gain
can be used to inductively build parsimonious models from data. We implement the methods in
PyTorch for easy portability and gpu-acceleration. The method is numeric-format agnostic and can
be extended to small integer formats in order to reduce the amount of memory needed for important
models to that of common microprocessors.

I. INTRODUCTION

When making a data-driven mathematical model it is
important to first understand what you want from it. If
you ask an undergraduate what they want from such a
model, they will say “accuracy”. If you ask a gradu-
ate student the same question they may also say “pre-
cision” If prodded further they may also add niceties
such as “computational tractability” or “mechanistic in-
terpretability.” If you ask a professor, they will likely go
on a diatribe about “generalizability” that could not be
summarized in the page limit of this article.

Unfortunately, the majority of machine learning mod-
els provide only a small subset of all the things we’d like
from them. Despite continual progress in modeling capa-
bilities, many of the limitations of modern techniques in
application are driven not by the nature of the models,
but by how they are trained.

Linear and readily linearizable models have long been
the cornerstone of modeling and control due to their sim-
plicity and tractability. The current best practice in
nonlinear optimization employs backpropagation [8] or
one of its more sophisticated cousins such as Adam[3] or,
more recently, Lion[1]. These procedures involve a for-
ward pass and a backward pass. The forward pass runs
a model on a set of training data, storing gradients at
each step. The backward pass then uses these gradients
to simplify the model and minimize it around the oper-
ating point. But when confronted with nondifferentiable
functions, the classical approach faces difficulties.

In general, “learning” can be seen as a two-point
boundary value problem, where one attempts to find a
path in parameter space starting with an initial guess
towards a path such that the model outputs align with
known data. These types of problems crop up across
many domains of science and engineering. As has been
discussed in our group’s prior work [9] [5], Backprop is
but one of many solutions to this problem that engineers
and scientists have developed.

Backpropagation has many desirable qualities, but

amongst its greatest failings is its inability to quantify un-
certainty in its parameter estimates. In important high-
risk scenarios, a model with no measure of its own confi-
dence is almost immediately disqualified. When making
decisions based on model predictions, it is crucial to un-
derstand how uncertainties in one’s model structure and
parameters propagate to uncertainty in forecasts is cru-
cial.
Strides made by our research group in information the-

ory and stochastic methods allow us to admit a stochas-
tic formulation of learning and reap all the benefits that
come from it. The method we present in this paper can
learn in black-box settings, with no constraints on dif-
ferentiability or even continuity. By bypassing these con-
straints, we admit learning to whole new classes of math-
ematical objects such as jump processes and stochastic
differential equations which have powerful modeling abil-
ities. This is achieved by examining nonlinear relation-
ships from an information-theoretic perspective.
By employing our method, models gain many desirable

traits for “free.” Simply by replacing 3 lines of code in a
python implementation, structured sparsity, uncertainty
quantification, and robust optimization follow shortly.
Uncertainty quantification offers a method for accurately
assessing the precision of models. Structured sparsity can
increase the computational tractibility of a large model.
The robustness of the optimization also increases the
model’s ability to climb out of local minima and gener-
alize to unseen or out-of-distribution data more readily.
Beyond mathematical elegance, our method is of great

interest to ML practitioners for its ability to promote
sparsity in models, drastically reducing the computa-
tional resources needed to employ them. By estimating
the information gains associated with changes in param-
eters we can identify and eliminate unnecessary weights
in both large and small models, reducing their complex-
ity. This approach is more methodologically sound than
traditional magnitude-based pruning methods[10].
Our new approach uses an ensemble of models to make

forward predictions. These models can be perturbed in
terms of state, parameter, or control input, depending on



2

the problem at hand. The spread of model prediction tra-
jectories, along with the precision of goal attainment or
measurement noise in estimation cases, provides the gain
terms needed for backward calculations. This eliminates
the need for explicit calculation of the model adjoint.

The Ensemble Kalman Filter and Smoother tech-
nique [2], which forms a Gaussian process implemented in
reduced-rank square-root form, has been applied to nu-
merous problems with nonlinear forward system dynam-
ics. It is particularly popular in the geosciences where
it is often used for data assimilation from multiple sen-
sor sources [4]. Its benefits extend beyond estimation to
control, autonomy, learning, and inference. In prior work
our group has developed quadcopter controllers based on
this technique [11].

For inference problems, we have extending the en-
semble approach to handle fully non-Gaussian posterior
uncertainties. This involves using information-theoretic
cost functions and closely related Variational Bayes
methods. These extensions are being applied to seismic
monitoring problems, such as locating small earthquakes
and nuclear explosions.

From a computational perspective, we see promise in
developing new architectures that enable additional op-
timizations of the ensemble approach. Beyond current
work, we are also excited that this technique applies to
the variational information-theoretic non-Gaussian set-
ting. By creating a platform for fast ensemble filtering
models, the project will have extensions to many prob-
lem domains and could become a general tool for future
projects.

We believe that the availability of GPU-enabled em-
bedded processors enables the development of a new com-
putational paradigm for ensemble-based estimation, con-
trol, and learning. This can be applied in various ap-
plications, including but not limited to autonomy. Al-
though Informative Ensemble Kalman Learning (IEKL)
has been tested in simulated experiments [11] [9] [7], this
paper represents the first development of a scalable and
open-source implementation.

II. METHODS

A. Ensemble Kalman Learning

Starting from a neural model with Gaussian label noise
and parameter perturbation term

ŷ = N(x;α+ α̃) (1)

ŷ = N(x;α) + Gα̃ (2)

we extract the estimate ŷ into label variation and mean
to obtain

Gα̃ = ˜̂y + ¯̂y −N(x;α) (3)

G can then be estimated as

GE[α̃α̃T ] = E[(˜̂y + δŷ)α̃T ] (4)

Because the label noise and parameter perturbations
are uncorrelated the expectations are the associated cross
covariances. Thus the forward Guassian process is

G = CαŷC
−1
αα (5)

Note that the computation of Cαŷ involves the forward
pass of the model and projection into the observation
domain. The adjoint Guassian process is then

G = CαŷCŷŷ
−1 (6)

Considering the performance objective

J(α|y) = 1

2
(δŷTCzz

−1δŷ + δα̂TCαα
−1δα̂) (7)

The solution to the minimization problem

α+ = argmin
α

J(α|y) (8)

is as follows [11]

α̂+ = α̂+ Cα̂ŷ(Cŷŷ + Cyy)
−1(y − ŷ) (9)

Using the ensemble approximation with E ensemble
members, we can write this in matrix form where each
realization of the random vector is a column. We adopt
the notation that Ã is A− E[A]. Under this scheme the
cross covariance of two ensembles is

CAB =
ÃB̃T

E − 1
(10)

Next we can compute the singular value decomposition

of the prediction deviations UΣV T =
˜̂
Y and carry out the

ensemble update in square-root form without explicitly
constructing the cross covariance matrix via the following
equation.

α̂+ = α̂[IE + V Σ(Σ2 + ρ2IE)−1UT (Ŷ − y)] (11)

Avoiding explicitly storing the cross covariance matrix
is crucial because it allows us to tackle very high dimen-
sional problems at their true rank, as opposed to at the
dimensionality of the observation. We expect that even
in very high dimensional systems, there are only few sig-
nificant components. By identifying and optimizing over
these high-impact factors, we can get more efficiency in
the learner or controller system. This notion of greedy
informative optimization / green control as implemented
by this method is discussed at length in prior work [11].



3

B. Observational Noise Scheduling

A principle challenge with ensemble methods is the
possibility of ensemble collapse. As the optimizer reaches
convergence the standard deviation of the parameter en-
semble can become quite small. If the deviation of the
resulting forward passes also becomes small, the observa-
tion ensemble matrix can become ill-conditioned, causing
the singular value decomposition to fail. In order to com-
pensate for this we introduce zero-mean observational
noise with a deviation corresponding to the performance
target variable ρ. As training progresses, we scale down
the performance target by a fixed annealing factor every
time the maximum of the parameter variances dips be-
low the value of the performance target. This annealing
rate is important, as having slow annealing rates limits
convergence, and having fast annealing rates can lead to
spontaneous collapse. In our experiments we use an an-
nealing factor of 0.75 across all experiments.

Another strategy to combat ensemble collapse is dy-
namic weight resampling. For parameters with a variance
across the ensemble too low for the numeric precision of
our algorithm, we can identify the ensemble mean and
variance and resample the distribution from a normal
distribution with the same mean and higher variance,
enforcing a diverse ensemble.

C. Informative Structural Adaptation

A major benefit of the ensemble method is that it lends
itself to information theoretic approaches. By assuming
the conditional expectation of the error with respect to
the parameters is Gaussian, we can obtain simple linear
algebraic equations to quantify mutual information be-
tween ensembles. For structure adaptation we adopt a
greedy informative approach. Given parameter ensem-
ble α̂ we can compute the mutual information with the
model error e via the following formula:

I(α̂; e) = −1

2
log [1− (

Cα̂e

Σα̂ΣT
e

)2] (12)

This gives us the mutual information between each error
dimension and each parameter. We take the l1 norm with
respect to the error dimensions so we have a 1-to-1 cor-
respondence between parameters and information. We
then set some number of the least informative parame-
ters to 0 and fine tune the remaining parameters until
convergence. By repeating this process we can achieve
high sparsity rates in models. For fully connected mod-
els we can go one step further, pruning ”dead” nodes that
have no incoming weights and propagating their biases to
the biases of the next layer. This process is demonstrated
in experiment 2??

As alluded to at earlier at the end of subsection [?
], informative optimization provides a positive feedback
loop which increases efficiency. By identifying unimpor-

tant e.g. low mutual information components of the op-
timization space, the space can be traversed more effi-
ciently. This then makes it less computationally inten-
sive to identify further components of minimal contribu-
tions. This cycle can be repeated until only the parame-
ters contributing to the true rank of the system are left
as demonstrated in experiment 2 ??.

III. IMPLEMENTATION OF GPU
ACCELERATION

Much of the engineering challenge of the implemen-
tation comes in the form of organizing available GPUs
in order to execute E forward passes of the model in as
little time as possible. Ideally all ensemble member for-
ward calculations would take place in parallel, but due to
VRAM constraints it is necessary to limit the number of
executions happening to the number of models whose pa-
rameters can fit on a set of GPUs. In order to maximize
the throughput of the forward passes we used a pipelined
multi-gpu approach.
Taking advantage of PyTorch’s [6] asynchronous GPU

execution model and vectorized mapping ability, our im-
plementation dispatches computation requests to each
GPU in chunks. Each GPU is given the next chunk of
inputs and parameters as soon as it completes its pre-
vious chunk without waiting for other GPUs to halt.
Extensive use of PyTorch’s VMAP function with stat-
ically allocated buffers is used to take full advantage of
each GPU by running multiple forward models per GPU
call dispatch. The complete architecture is depicted in
Figure 1 1 Care was taken to ensure support for many
types of models at various scales. Our implementation
supports training on single-GPU, or N-GPUs. The only
constraint is that at least one model in its entirety must
fit on a single host device. This is a limitation of the
implementation, however, not the method.
In order to reduce the computational burden and mem-

ory consumption of the ensemble update step, we split
the weights into sections which each get an ensemble
update with respect to only the weights within the sec-
tion. This assumes that the covariance matrix can be
block partitioned without losing significant rank. We find
this to be a practical assumption which implies that the
weights at the start of a network have little mutual infor-
mation with those at the end of the network. This is the
empirical observation that underlies foundation models
with arbitrary fine-tuned heads.

IV. EXPERIMENTS

A. Convergence Comparison

To test our methodology we start small with a 600k
parameter LeNet model. In 2 we compare AdamW, the
Ensemble Kalman approach, and a hyrbid alternating



4

Figure 1: Software architecture of IEKL update procedure

Figure 2: Training LeNet on FashionMNIST with
AdamW, IEKL, and a hybrid approach alternating
AdamW and IEKL updates

Figure 3: Histograms of parameter variances shrinking
over training iterations as uncertainty decreases.

methodology. We then visualize the reduction in model
uncertainty over the learning process in3.

Default hyperparameters for each optimizer were used.

B. Unstructured Model Sparsification

By training LeNet on Fashion-MNIST with multiple
levels of target informative sparsification, we breach the
Pareto frontier of model parameter efficiency in CNNs.

C. Reduced Order Modeling

In ?? we demonstrate that iteratively training and
pruning a much larger student model against a small
teacher model can yield a smaller model that has indis-
tinguishable outputs from the teacher.

V. CONCLUSIONS AND FUTURE WORK

We develop a scalable implementation of the Ensem-
ble Kalman Filter technique for machine learning opti-
mization applications. We see this approach as having
many important advantages over current methods such
as Adam due to its ability to quantify uncertainty and
promote sparsity. With the exception of models so large
that they cannot fit on a single GPU, our methods rep-
resent the most effective and accessible way to jointly
optimize structure and parameters.
Informative Ensemble Kalman Learning is a recent

technique with wide applications. In our group alone,
we apply the technique to seismic nuclear test monitor-
ing, geothermal energy systems optimization, learning
polynomial ordinary differential equations for hurricane
trajectories, and training models for remote sensing of
groundwater and salinity from satellite data. We can’t
wait to see new challenges we and others can face with
this novel technique and implementation.



5

Figure 4: Despite having high performance, ResNet18 is clearly larger than necessary for the FasionMNIST.
ResNet18 sparsified via Hyrbid IEKL loses performance as it shrinks, but does not approach the efficiency of
natively smaller models.

In future work we seek to develop computational ar-
chitectures to accelerate this technique and apply flexible
computing media such as FPGAs to perform rapid infer-
ence and learning, perhaps even in real-time. The devel-
opment of sparse-matrix operation accelerators provides
an exciting insight into the future of computation. By
exploiting information-theoretic measures of sparsity in
large nonlinear models, we look towards a future where
even models as large as ChatGPT can be securely and
privately executed on embedded devices. The compres-
sion of model’s nonzero-parameters can allow for us to

scale to larger and deeper models without being bound
by hardware memory and compute constraints.

VI. CONTRIBUTIONS AND
ACKNOWLEDGMENT

We thank the entire Earth Signals and Systems Group
for their support and express appreciation to the MIT
Climate Grand Challenges Fund for financial contribu-
tions.

[1] Xiangning Chen, Chen Liang, Da Huang, Esteban Real,
Kaiyuan Wang, Yao Liu, Hieu Pham, Xuanyi Dong,
Thang Luong, Cho-Jui Hsieh, Yifeng Lu, and Quoc V.
Le. Symbolic discovery of optimization algorithms, 2023.

[2] Geir Evensen. The ensemble kalman filter: theoretical
formulation and practical implementation. Ocean Dy-
namics, 53:343–367, 2003.

[3] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. 3rd International Conference
for Learning Representations, San Diego, 2014.

[4] Liangping Li, Ryan Puzel, and Arden Davis. Data as-
similation in groundwater modelling: ensemble kalman
filter versus ensemble smoothers. Hydrological Processes,
32(13):2020–2029, 2018.

[5] Ziwei Li and Sai Ravela. Neural networks as geometric
chaotic maps. IEEE Transactions on Neural Networks
and Learning Systems, 34(1):527–533, January 2023.

[6] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Des-



6

(a) Comparison of Adam to ENKF optimizer after each structural
adaptation

(b) Student

(c) Teacher (d) Learned Model

Figure 5: The white noise response of the teacher network is used to informatively optimize and sparsify the student
network until convergence is reached. Subfigure (a) compares the performance of the current state-of-the-art
optimizer, Adam, against ENKF at several stages of structural optimization. The student, teacher, and learned
networks are visualized in subfigures (b), (c), and (d), respectively.

maison, Andreas Köpf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chin-
tala. Pytorch: An imperative style, high-performance
deep learning library. NeurIPS, 2019.

[7] S. Chandu Ravela and Dennis B. McLaughlin. Fast en-
semble smoothing. Ocean Dynamics, 57:123–134, 2006.

[8] David E Rumelhart, Geoffrey E Hinton, and Ronald J
Williams. Learning representations by back-propagating
errors. Nature, 323(6088):533–536, 1986.

[9] Margaret Trautner, Gabriel Margolis, and Sai Ravela.
Informative neural ensemble kalman learning, 2020.

[10] Sunil Vadera and Salem Ameen. Methods for pruning
deep neural networks, 2021.



7

[11] Erina Yamaguchi and Sai Ravela. Multirotor ensemble
model predictive control i: Simulation experiments, 2023.


	GPU Acceleration for Informative Ensemble Kalman Learning at Scale
	Abstract
	Introduction
	Methods
	Ensemble Kalman Learning
	Observational Noise Scheduling
	Informative Structural Adaptation

	Implementation of GPU Acceleration
	Experiments
	Convergence Comparison
	Unstructured Model Sparsification
	Reduced Order Modeling

	Conclusions and Future Work
	Contributions and Acknowledgment
	References


