JOURNAL OF 6.205 FINAL PROJECTS, FALL 2023

Bespoke: an ONNX to FPGA compiler
for Rapid Development of ML Stream Processors

Thelonious Cooper
Department of Electrical Engineering and Computer Science
Massachusetts Institute of Technology
Cambridge, MA, USA
theloni @mit.edu

Abstract—Bespoke is a system for synthesizing FPGA stream
processors from 8-bit quantized neural network specifications.
For edge ML applications, power efficiency and speed are
paramount. The system described presents an alternative to run-
ning intensive ML routines on microcontrollers, allowing for edge
systems to use cheaper and more power efficient microcontrollers
alongside a bespoke FPGA that can be dynamically reconfigured
to suit any ML stream-processing task. The model could even be
modified or tuned on the edge by the microcontroller. Suitable
applications include sensor data processing, state estimation and
control, forecasting, and decision making. Repository available
at https://github.com/theloni-monk/Bespoke

Index Terms—Field Programmable Gate Array, Stream Pro-
cessing, Machine Learning Hardware.

I. INTRODUCTION

DGE machine learning applications have been gain-

ing significant attention lately due to their promise of
complex operations without the need for slow server-side
processing. Many loT devices are glorified relay clients, with
all significant computation occurring offsite. While in transit
the data they are relaying is subject to latency, corruption,
unwanted inspection[Dub+21], spoofing, and all manner of
other challenges. Performing computations on-device remedies
all of these problems, but presents its own difficulties. A key
concern with edge machine learning is the computation and
power requirements of ML routines. Common general purpose
microcontrollers can often not handle the intensive linear
algebraic operations common in machine learning in a time or
power efficient manner. One approach to address this concern
is packaging the microcontroller with a TPU[Zha+23] or other
generic matrix operation accelerator. These accelerators often
support many operations not needed for a particular use case,
compromising footprint and power consumption for generality.
Instead, I propose purpose-built accelerators that only run a
particular network. It is uncommon for edge ML applications
to be running many different models requiring a diverse set
of supported operations. As such, Bespoke offers a superior
power and time efficient solution for edge computation.

II. RELATED WORK

Most focus of research on edge ML processors is concerned
with generic tensor accelerators that can support many opera-
tions. These architectures are limited by their need for shared
memory access which is subject to data leakage concerns

and bandwidth limitations. Some work of interest is in the
quantization of large networks to 8bit formats. Many so called
”8-bit quantization” implementations in popular neural net-
work frameworks like Tensorflow[Mar+15], PyTorch[Pas+19],
and ONNX[dev21] fail to create a fully 8-bit implementation.
Instead they find zero points and scales for 32-bit floating
point numbers which they go between when passing between
integer matrix multiplications. There has been some work to
generate entirely 8 bit integer networks that have the potential
to abuse things like over and underflow [Wan+20]. But these
networks remain on generalist hardware such as gpu and cpu
architectures.

III. MACHINE LEARNING COMPOSABLE COMPONENTS

As a generic architecture all modules will follow a similar
format. Each module will be connected to its previous and
next nodes via register-based FIFOs and will be parameterized
by the number of concurrent multiplication or logic registers
(WorkingRegs) they have. Each module will grab as many
bytes from the FIFO as they have working registers at a
time. Working registers will each be allowed a single DSP48
slice so DSP48 and BRAM usage will be known at link
time as opposed to synthesis time. The FIFOs used have
different read and write sizes, allowing modules with different
bandwidths to communicate seamlessly via a ready flag. In a
future implementation, the FIFOs could use BRAM and have
masking to acheive the varied read and write widths. This
would significantly reduce the LUT usage in the synthesized
design.

A. Static Matrix Vector Product

Perhaps the most important operation of any ML system
is the matrix-vector product. The MVProd module is pa-
rameterized in terms of WorkingRegs: the number of par-
allel multipliers allocated to the module, InVecLength: the
dimension of the input vector, OutVecLength: the dimension
of the output vector, and WeightFile: a string referencing the
.mem file for the weight BRAM. I have implemented the
matrix as a contiguous row-major BRAM instance which is
defined at link time by a weight file parameter. The vector is
received in chunks of WorkingRegs bytes from the input FIFO.
The dot product is implemented with parallel multiplications
fed into a pipelined adder tree. The pipelined adder tree

JOURNAL OF 6.205 FINAL PROJECTS, FALL 2023

in_data_ready i]

Input FIFO DSP48

DSP48

weight_write_ptr
DSP4g

DSPag
Weight BRAM

DSP48

DSP48

Generic Module

Fig. 1. Generic module architecture which is specified by each ML component

first stores is constructed via a recursive generate block that
pushes its input into registers and then combinationally adds
them for its output. Pipelining the inputs as opposed to the
outputs is necessary to prevent the synthesizer from inferring
multiply-accumulate blocks which have higher latency than
pure multiplications. The chunks are requested with a single
logic that tells the FIFO to increment the read pointer and
provide the information. A separate signal tells the FIFO to
reset its read pointer back to the start of the vector block.
Currently the module performs a single parallel multiply-
accumulate operation per cycle, and thus produces only one
output vector element at a time. In a future implementation
this could be further parallelized. As it stands the MVProd
module requires

OutVecLength * [logy(WorkingRegs)]
InVecLength x OutVecLength
WorkingRegs

cycles to complete an operation.

B. Static Vector Vector Addition

Bias, or static vector-vector addition is another common ML
operation. It is implemented with a BRAM instance for its
biases and a FIFO for the input vector. It is implemented as
a Mealy FSM performing WorkingRegs parallel additions per
cycle.

C. Dynamic Vector Vector Addition

Dynamic Vector-Vector addition takes vectors from two
FIFOs and outputs their sum to a third FIFO. This operation
is important because it allow for branching computations and
recurrence.

D. Dynamic Vector Vector Multiplication

Dynamic Vector-Vector multiplication is the multiplicative
analog of the dynamic vector-vector addition module. This
operation is common for masking or attention models.

E. Rectified Linear Unit (ReLU)

The Rectified Linear Unit or ReLU is a common activation
function which simply zeros out all elements below zero. It
allows for strong nonlinearity and masking. It is implemented
as a Mealy FSM, performing conditional evaluation of Work-
ingRegs bytes at a time.

IV. DYNAMIC MODEL HARDWARE GENERATION

The second aspect of my project is the model parsing and
Verilog generation based on the model specification. This
script will have several components.

A. Model Specification Parsing

To begin, parses the Open Neural Network Exchange
(ONNX) data file, a model specification designed by Microsoft
for edge applications. It then identifiers the variables and the
flow of information into an intermediate graph representation.
The system iterates through the nodes of the ONNX graph
and creates modules with fifos in between them.

B. BRAM Allocation and .mem Generation

In this stage weights from the integer matrix initializer fields
of the ONNX model will be converted to .mem format in this
stage and the compiler will error if it runs out of space.

C. Register and DSP Allocation

In this stage the compiler starts by splitting the available
DSP blocks among the matrix multiplication modules. Each
matrix multiplier gets the highest factor of the input vector that
is less than the total number DSPs divided by the number of
matrix multipliers. This ensures that the DSP utilization will
always be within the constraints. Then, to reduce idleness, the
compiler calculates how many cycles it will take to complete
the necessary matrix multiplications and will allocate working
registers to the remaining modules as to match the number of
cycles in the mutlipliers, thus minimizing LUT usage. Here the
gross latency is computed and reported to the user as well. The
latency of a “’square” network in this scheme is

Vector Dimension® 3 NetworkDepth
#DSPsPerMatMul — #MatMuls

But this formula becomes more complicated for relatively
prime vector dimensions and # DSP blocks

D. Code Generation

Finally, the modules will be assembled into SystemVerilog
and linked up according to the graph. This SystemVerilog
will then be synthesized by Vivado and flashed to the FPGA.
Modules were developed as classes which inherit from a
common MLModule abstract base class that describes a node
in a DAG with variables it owns and variables it references.

JOURNAL OF 6.205 FINAL PROJECTS, FALL 2023

FPGA Specs ONNX File
ONNX Parser .mem conversion
—
Parsing IR Graph
DSP Allocator
BRAM Allocator
U
Parameter
Identification Module Graph
SystemVerilog
v
Vivado
Synthesis

Fig. 2. ONNX-to-FPGA compiler architecture diagram

V. RESULTS AND PERFORMANCE ANALYSIS
A. Verification Methodology

Bespoke’s models have been verified by generating ONNX
models with random integer weight and bias matrices that
are then compiled to a model and simulated. This test was
performed for 15 models of various sizes and the simulated
FPGA produced identical results to the pPthon ONNX Refer-
ence Evaluator. In order to perform this verification a script
was written that generates onnx specifications for 8 bit neural
networks of specified dimension.

B. Timing and Utilization Analysis

Analysis was performed on 3-layer fully connected square
networks optimized according to the Spartan-7 specification. It

Width | Params | Slice LUT | Slice Reg | BRAM | DSP
5 90 2.32 1.19 0 15
10 330 5.31 1.89 6 25
20 1260 6.98 3.56 10 50
40 4920 12.69 8.18 18 100
50 7650 34.86 10.34 12 62.5
75 17100 50.46 13.78 14 62.5
80 19440 38.37 16.16 20 100
100 30300 61.05 18.49 14 62.5
TABLE I

9% UTILIZATION OF VARIOUS RESOURCES ON THE SPARTAN-7

is of note that all of the utilization categories are significantly
sublinear with respect to number of parameters. The LUT
usage seems to be the limiting factor. After performing hier-
archical utilization report analysis, I identified the LUT usage
culprit as my register-based FIFO. I implemented the FIFO in

100
90
80
70
60
50
40
30
20

% Utilization

5 10 20 40 50 75 80 100
Layer Width
Slice LUT Slice Reg BRAM emmmmm DSP48

Fig. 3. Utilization of FPGA resources vs Layer Width

registers because having variable read and write widths allows
for modules that have different operating widths to interface
to each other seamlessly and without having to keep track of
their own indexing.

VI. DISCUSSION AND APPLICATIONS

Bespoke opens the door to efficient realizations of all man-
ner of realtime data analysis and decision making from fused
multimodal information. Realizing connections between multi-
modal time series data is a challenging task, but advancements
using ML techniques such as [TZ22] have proven effective.
Fast decision making from multimodal information is critical
in fields such as interventional medicine, defense, and finance
(the fpga dark side). Machine learning models such as 1d
convolutional neural networks have proven very effective for
anomaly detection [TT23] and classification [Kir+19].These
models can be effectively realized in the Bespoke architecture.
As for nonlinear signal processing, I have talked to a startup
spun off from the Princeton Intelligent Robotic Motion Lab
(IRoM) that is developing MEMs sensors with very nonlinear
voltage responses to the target variables, who use simple ML
models to perform nonlinear regression. They are interested in
using this technology to move the burden of this computation
from the microcontroller to the sensorboard itself allow for
modular use. They develop these sensors for realtime wind
sensing and gust rejection for advanced quadcopter autopilots
as discussed further in [Sim+23]. On the topic of control,
Bespoke is of interest for designing controllers and observers
for complex autopilot systems. As certain classes of dynam-
ical systems can be exactly represented by neural networks
[TLR21], monte carlo methods for control can be constructed
with Bespoke generating many forward passes for a model
predictive control scheme.

VII. CONCLUSION AND FUTURE WORK

Although ML accelerators are far from new, there don’t
exist low-cost methods for creating cheap stream processors
for any particular ML application. So I ask the question,
why pay for generality when its not needed? Bespoke will
deliver the greatest value to those interested in achieving
efficient ML computation without having to invest in expensive
and complex microprocessors or SoCs with embedded GPUs.

JOURNAL OF 6.205 FINAL PROJECTS, FALL 2023

Something like an Arduino Micro could theoretically be used
as the brain of even a complex system if its role is simply to
ingest data from sensors or the web and feed it to a stream
processor for any intensive computation.

If T were to have more time with this project, I would
reimplement the FIFOs in 2-cycle BRAM with byte masks
for varied read and write widths. This would significantly
improve the potential ability to scale and could allow for
the processing of very high dimensional information such as
images. [would also implement several more modules, such as
arbitrary convolution via FFT, MaxPooling for downscalling in
large CNNGs, and other activation functions. This would expand
the number of networks realizable in the hardware framework.

I have thoroughly enjoyed working on this project and
would be happy to continue on it as I think it is something
I could imagine using in several interesting embedded appli-
cations. I have enjoyed the way that digital hardware devel-
opment makes you think. Things can be very complicated but
their fundemental operation is so directly tied to what you’ve
typed that you (mostly) have yourself to blame when things
go wrong. I find this paradigm satisfying. I am interested
in pursuing systems science with embedded applications for
ubiquitous signal processors.

ACKNOWLEDGMENT

The author would like to thank Joe Steinmeyer of the
Department of Electrical and Computer Engineering, Mas-
sachusetts Institute of Technology for his advice on direction
and implementation of the project.

REFERENCES

ONNX Runtime developers. ONNX Runtime.
https://onnxruntime.ai/. Version: x.y.z. 2021.
Anuj Dubey et al. “Guarding Machine Learn-
ing Hardware Against Physical Side-Channel At-
tacks”. In: arXiv:2109.00187 (2021). URL: https:
/larxiv.org/abs/2109.00187.

Serkan Kiranyaz et al. “1D Convolutional Neural
Networks and Applications: A Survey”. In: arXiv
preprint arXiv:1905.03554 (2019).

Martin Abadi et al. TensorFlow: Large-Scale Ma-
chine Learning on Heterogeneous Systems. Soft-
ware available from tensorflow.org. 2015. URL:
https://www.tensorflow.org/.

Adam Paszke et al. “PyTorch: An Imperative
Style, High-Performance Deep Learning Library”.
In: Advances in Neural Information Process-
ing Systems 32. Curran Associates, Inc., 2019,
pp- 8024-8035. URL: http://papers.neurips.cc/
paper/9015 - pytorch - an - imperative - style - high -
performance-deep-learning-library.pdf.

Nathaniel Simon et al. “FlowDrone: Wind Es-
timation and Gust Rejection on UAVs Using
Fast-Response Hot-Wire Flow Sensors”. In: arXiv
preprint arXiv:2210.05857 (2023). URL: https://
arxiv.org/abs/2210.05857.

[dev21]

[Dub+21]

[Kir+19]

[Mar+15]

[Pas+19]

[Sim+23]

[TLR21]

[TT23]

[TZ22]

[Wan+20]

[Zha+23]

Margaret Trautner, Ziwei Li, and Sai Ravela.
“Learn Like The Pro: Norms from Theory to
Size Neural Computation”. In: arXiv preprint
arXiv:2106.11409 (2021). URL: https://arxiv.org/
abs/2106.11409.

VL. Vo Tran and Nguyen TC. “One-dimensional
convolutional neural network for damage detec-
tion”. In: Springer (2023).

Peiwang Tang and Xianchao Zhang. “Features Fu-
sion Framework for Multimodal Irregular Time-
series Events”. In: Springer. 2022. URL: %5Curl%
7Bhttps://link.springer.com/chapter/10.1007/978-
3-031-20862-1_27%7D.

Maolin Wang et al. “NITI: Training Integer Neu-
ral Networks Using Integer-only Arithmetic”. In:
arXiv preprint arXiv:2009.13108 (2020). URL:
https://arxiv.org/abs/2009.13108.

Zhuoyi Zhang et al. “Exploring the Potential of
Flexible 8-bit Format: Design and Algorithm”. In:
arXiv preprint arXiv:2310.13513 (2023).

Thelonious Cooper is a 3rd year undergraduate at
MIT studying course 6-1 (Electrical Engineering)
with a focus in hardware and systems science.

